Search results for "Oxaloacetate decarboxylase"

showing 3 items of 3 documents

C 4 -Dicarboxylate Utilization in Aerobic and Anaerobic Growth

2016

C 4 -dicarboxylates and the C 4 -dicarboxylic amino acid l -aspartate support aerobic and anaerobic growth of Escherichia coli and related bacteria. In aerobic growth, succinate, fumarate, D - and L -malate, L -aspartate, and L -tartrate are metabolized by the citric acid cycle and associated reactions. Because of the interruption of the citric acid cycle under anaerobic conditions, anaerobic metabolism of C 4 -dicarboxylates depends on fumarate reduction to succinate (fumarate respiration). In some related bacteria (e.g., Klebsiella ), utilization of C 4 -dicarboxylates, such as tartrate, is independent of fumarate respiration and uses a Na + -dependent membrane-bound oxaloacetate decarbo…

0301 basic medicineCarboxy-LyasesCitric Acid Cycle030106 microbiologySuccinic AcidContext (language use)medicine.disease_causeMicrobiology03 medical and health sciencesFumaratesKlebsiellaEscherichia colimedicineHumansDicarboxylic AcidsAnaerobiosisEscherichia coliDicarboxylic Acid TransportersbiologyEscherichia coli ProteinsMembrane Transport ProteinsBiological TransportGene Expression Regulation BacterialMetabolismFumarate reductasebiology.organism_classificationAerobiosisCitric acid cycle030104 developmental biologyOxaloacetate decarboxylaseBiochemistryAnaerobic exerciseBacteriaEcoSal Plus
researchProduct

Purification of Leuconostoc mesenteroides citrate lyase and cloning and characterization of the citCDEFG gene cluster

1998

ABSTRACT A citrate lyase (EC 4.1.3.6 ) was purified 25-fold from Leuconostoc mesenteroides and was shown to contain three subunits. The first 42 amino acids of the β subunit were identified, as well as an internal peptide sequence spanning some 20 amino acids into the α subunit. Using degenerated primers from these sequences, we amplified a 1.2-kb DNA fragment by PCR from Leuconostoc mesenteroides subsp. cremoris . This fragment was used as a probe for screening a Leuconostoc genomic bank to identify the structural genes. The 2.7-kb gene cluster encoding citrate lyase of L. mesenteroides is organized in three open reading frames, citD , citE , and citF , encoding, respectively, the three ci…

DNA BacterialATP citrate lyaseMolecular Sequence DataGene ExpressionBiologymedicine.disease_causeMicrobiologyBacterial ProteinsCarbon-Sulfur LigasesMultienzyme ComplexesGene clusterAcyl Carrier ProteinEscherichia colimedicineLeuconostocAmino Acid SequenceCloning MolecularMolecular BiologyEscherichia coliBase SequenceSequence Homology Amino AcidStructural geneOxo-Acid-LyasesSequence Analysis DNALyasebiology.organism_classificationEnzymes and ProteinsMolecular biologyOxaloacetate decarboxylaseBiochemistryGenes BacterialLeuconostoc mesenteroidesMultigene FamilyCoenzyme A-TransferasesLeuconostoc
researchProduct

Mutation of the oxaloacetate decarboxylase gene of Lactococcus lactis subsp. lactis impairs the growth during citrate metabolism

2007

 ; Aims: Citrate metabolism generates metabolic energy through the generation of a membrane potential and a pH gradient. The purpose of this work was to study the influence of oxaloacetate decarboxylase in citrate metabolism and intracellular pH maintenance in relation to acidic conditions. Methods and Results: A Lactococcus lactis oxaloacetate decarboxylase mutant [ILCitM (pFL3)] was constructed by double homologous recombination. During culture with citrate, and whatever the initial pH, the growth rate of the mutant was lower. In addition, the production of diacetyl and acetoin was altered in the mutant strain. However, our results indicated no relationship with a change in the maintenanc…

Oxaloacetic AcidATP citrate lyaseCarboxy-LyasesCITRATE METABOLISMIntracellular pHMolecular Sequence DataDiacetylACIDE LACTIQUEApplied Microbiology and BiotechnologyCitric Acidchemistry.chemical_compoundLACTIC ACID BACTERIAOxaloacetic acidCitrate synthaseBacteriological TechniquesBase SequencebiologyOXALOACETATE DECARBOXYLASEAcetoinLactococcus lactisGeneral MedicineHydrogen-Ion Concentrationbiology.organism_classificationLactococcus lactis[SDV.MP]Life Sciences [q-bio]/Microbiology and ParasitologyOxaloacetate decarboxylaseBiochemistrychemistryGenes BacterialFermentationMutationINTRACELLULAR PHFood Microbiologybiology.proteinGenetic EngineeringCitric acidPhosphoenolpyruvate carboxykinaseBiotechnologyJournal of Applied Microbiology
researchProduct